Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542848

RESUMO

Vanadium complexes have gained considerable attention as biologically active compounds. In this contribution, three previously reported dioxovanadium(V) complexes with pyridoxal semicarbazone, thiosemicarbazone, and S-methyl-iso-thiosemicarbazone ligands are theoretically examined. The intermolecular stabilization interactions within crystallographic structures were investigated by Hirshfeld surface analysis. These experimental structures were optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,N,O,S)/def2-TZVP(V) level of theory, and crystallographic and optimized bond lengths and angles were compared. High correlation coefficients and low mean absolute errors between these two data sets proved that the selected level of theory was appropriate for the description of the system. The changes in structures and stability were examined by adding explicit solvent molecules. The Quantum Theory of Atoms in Molecules (QTAIM) was employed to analyze the intramolecular interactions with special emphasis on the effect of substituents. A good correlation between electron density/Laplacian and interatomic distance was found. Through molecular docking simulations towards Bovine Serum Albumin (BSA), the binding affinity of complexes was further investigated. The spontaneity of binding in the active position of BSA was shown. Further experimental studies on this class of compounds are advised.

2.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834192

RESUMO

Pyridoxylidene-aminoguanidine (PLAG) and its transition metal complexes are biologically active compounds with interesting properties. In this contribution, three new metal-PLAG complexes, Zn(PLAG)(SO4)(H2O)].∙H2O (Zn-PLAG), [Co(PLAG)2]SO4∙2H2O (Co-PLAG), and [Fe(PLAG)2]SO4∙2H2O) (Fe-PLAG), were synthetized and characterized by the X-ray crystallography. The intermolecular interactions governing the stability of crystal structure were compared to those of Cu(PLAG)(NCS)2 (Cu-PLAG) within Hirshfeld surface analysis. The structures were optimized at B3LYP/6-31+G(d,p)(H,C,N,O,S)/LanL2DZ (Fe,Co,Zn,Cu), and stability was assessed through Natural Bond Orbital Theory and Quantum Theory of Atoms in Molecules. Special emphasis was put on investigating the ligand's stability and reactivity. The binding of these compounds to Bovine and Human serum albumin was investigated by spectrofluorometric titration. The importance of complex geometry and various ligands for protein binding was shown. These results were complemented by the molecular docking study to elucidate the most important interactions. The thermodynamic parameters of the binding process were determined. The binding to DNA, as one of the main pathways in the cell death cycle, was analyzed by molecular docking. The cytotoxicity was determined towards HCT116, A375, MCF-7, and A2780 cell lines. The most active compound was Cu-PLAG due to the presence of PLAG and two thiocyanate ligands.


Assuntos
Complexos de Coordenação , Neoplasias Ovarianas , Feminino , Animais , Bovinos , Humanos , Ligação Proteica , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Metais , DNA/química , Complexos de Coordenação/química , Zinco/química , Ligantes , Cobre/química
3.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569285

RESUMO

Thiosemicarbazones and their transition metal complexes are biologically active compounds and anticancer agents with versatile structural properties. In this contribution, the structural features and stability of four pyridoxal-thiosemicarbazone (PLTSC) complexes with Fe, Co, Ni, and Cu were investigated using the density functional theory and natural bond orbital approach. Special emphasis was placed on the analysis of the donor atom-metal interactions. The geometry of compounds and crystallographic structures were further examined by Hirshfeld surface analysis, and the main intermolecular interactions were outlined. It has been shown that the geometry and the number of PLTSC units in the structure determine the type and contribution of the specific interactions. The binding of all four complexes to bovine and human serum albumin was investigated through spectrofluorometric titration. The dependency of the thermodynamic parameters on the present metal ion and geometry was explained by the possible interactions through molecular docking simulations. The binding of complexes to DNA, as one of the possible ways the compounds could induce cell death, was examined by molecular docking. The cytotoxicity was measured towards HCT116, A375, MCF-7, A2780, and MCF5 cell lines, with Cu-PLTSC being the most active, as it had the highest affinity towards DNA and proteins.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Tiossemicarbazonas , Feminino , Animais , Bovinos , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligação Proteica , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Metais , DNA/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Piridoxal/farmacologia , Cobre/química
4.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511579

RESUMO

Coumarin derivatives are a class of compounds with pronounced biological activities that depend primarily on the present substituents. Four 3-methoxycarbonylcoumarin derivatives with substituents of different electron-donating/electron-withdrawing abilities (Br, NO2, OH, and OMe) were investigated structurally by NMR, IR, and UV-VIS spectroscopies and density functional theory methods. The appropriate level of theory (B3LYP-D3BJ/6-311++G(d,p) was selected after comparing similar compounds' experimental and theoretical structural parameters. The natural bond orbital and quantum theory of atoms in molecules were employed to investigate the intramolecular interactions governing stability. The electronic effects of substituents mostly affected the aromatic ring that the substituents are directly attached to. The antioxidant properties were investigated by electron paramagnetic resonance spectroscopy towards HO•, and the percentages of reduction were between 13% (6-Br) and 23% (6-OMe). The protein binding properties towards transport proteins were assessed by spectrofluorimetry, molecular docking, and molecular dynamics (MD). The experimentally determined binding energies were well reproduced by molecular docking, showing that the spontaneity of ibuprofen binding was comparable to the investigated compounds. The flexibility of HSA in MD simulations depended on the substituents. These results proved the importance of electronic effects for the protein binding affinities and antioxidant properties of coumarin derivatives.


Assuntos
Antioxidantes , Eletrônica , Modelos Moleculares , Antioxidantes/farmacologia , Ligação Proteica , Simulação de Acoplamento Molecular , Espectroscopia de Ressonância Magnética
5.
Artigo em Inglês | MEDLINE | ID: mdl-36767412

RESUMO

Coumarins represent a broad class of compounds with pronounced pharmacological properties and therapeutic potential. The pursuit of the commercialization of these compounds requires the establishment of controlled and highly efficient degradation processes, such as advanced oxidation processes (AOPs). Application of this methodology necessitates a comprehensive understanding of the degradation mechanisms of these compounds. For this reason, possible reaction routes between HO• and recently synthesized aminophenol 4,7-dihydroxycoumarin derivatives, as model systems, were examined using electron paramagnetic resonance (EPR) spectroscopy and a quantum mechanical approach (a QM-ORSA methodology) based on density functional theory (DFT). The EPR results indicated that all compounds had significantly reduced amounts of HO• radicals present in the reaction system under physiological conditions. The kinetic DFT study showed that all investigated compounds reacted with HO• via HAT/PCET and SPLET mechanisms. The estimated overall rate constants (koverall) correlated with the EPR results satisfactorily. Unlike HO• radicals, the newly formed radicals did not show (or showed negligible) activity towards biomolecule models representing biological targets. Inactivation of the formed radical species through the synergistic action of O2/NOx or the subsequent reaction with HO• was thermodynamically favored. The ecotoxicity assessment of the starting compounds and oxidation products, formed in multistage reactions with O2/NOx and HO•, indicated that the formed products showed lower acute and chronic toxicity effects on aquatic organisms than the starting compounds, which is a prerequisite for the application of AOPs procedures in the degradation of compounds.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Oxirredução , Organismos Aquáticos , Cinética , Poluentes Químicos da Água/análise
6.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055194

RESUMO

In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.


Assuntos
4-Hidroxicumarinas/síntese química , Antineoplásicos/síntese química , Anidrases Carbônicas/metabolismo , Neoplasias/enzimologia , Neurotransmissores/química , 4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Anidrases Carbônicas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Octopamina/química , Difração de Raios X
7.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614131

RESUMO

Ruthenium(II)-arene complexes have gained significant research interest due to their possible application in cancer therapy. In this contribution two new complexes are described, namely [{RuCl(η6-p-cymene)}2(µ-Cl)(µ-1-N,N'-naphthyl)]X (X = Cl, 1; PF6, 2), which were fully characterized by IR, NMR, and elemental microanalysis. Furthermore, the structure of 2 in the solid state was determined by a single crystal X-ray crystallographic study, confirming the composition of the crystals as 2·2MeOH. The Hirshfeld surface analysis was employed for the investigation of interactions that govern the crystal structure of 2·2MeOH. The structural data for 2 out of 2·2MeOH was used for the theoretical analysis of the cationic part [{RuCl(η6-p-cymene)}2(µ-Cl)(µ-1-N,N'-naphthyl)]+ (2a) which is common to both 1 and 2. The density functional theory, at B3LYP/6-31+G(d,p) basis set for H, C, N, and Cl atoms and LanL2DZ for Ru ions, was used for the optimization of the 2a structure. The natural bond orbital and quantum theory of atoms in molecules analyses were employed to quantify the intramolecular interactions. The reproduction of experimental IR and NMR spectra proved the applicability of the chosen level of theory. The binding of 1 to bovine serum albumin was examined by spectrofluorimetry and molecular docking, with complementary results obtained. Compound 1 acted as a radical scavenger towards DPPH• and HO• radicals, along with high activity towards cancer prostate and colon cell lines.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Humanos , Simulação de Acoplamento Molecular , Cimenos , Espectroscopia de Ressonância Magnética , Rutênio/farmacologia , Rutênio/química , Antineoplásicos/química , Estrutura Molecular
8.
Comput Biol Chem ; 95: 107573, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562727

RESUMO

In the past few years, there has been a certain interest in nitrogen-centered radicals, biologically important radicals that play a vital role in various processes and constitute many important biological molecules. In this paper, there was an attempt to bridge a gap in the literature that concerns the antiradical potency of monoamine neurotransmitters (dopamine, epinephrine, and norepinephrine) and their metabolites towards these radicals. The most probable radical quenching mechanism was determined for each radical out of three common mechanisms, namely Hydrogen Atom Transfer (HAT), Single Electron Transfer followed by the Proton Transfer (SET-PT), and Sequential Proton Loss Electron Transfer (SPLET). Marcus' theory was then used to determine the reaction rates for the electron transfer process. SPLET was the most probable mechanism for both reactions with the aminyl and hydrazyl radicals, while HAT and SPLET were plausible mechanisms for reactions with the imidazolyl radical. Special emphasis was put on the investigation of the substituent effect on the preferred mechanism. The necessity of both thermodynamic and kinetic parameters for the comparison of the antiradical potency of compounds was discussed. The same methodology was applied for the theoretical investigation of the reactivity towards DPPH⦁, a member of the hydrazyl radicals. An ecotoxicity analysis was performed to assess the impact the investigated radicals have on the ecosystem. Except for histidine, every other neutral form was either toxic or highly toxic to some of the analyzed marine organisms.


Assuntos
Antioxidantes/farmacologia , Neurotransmissores/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Compostos de Bifenilo/antagonistas & inibidores , Biologia Computacional , Transporte de Elétrons , Cinética , Modelos Moleculares , Estrutura Molecular , Neurotransmissores/química , Neurotransmissores/metabolismo , Picratos/antagonistas & inibidores , Termodinâmica
9.
Antioxidants (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439551

RESUMO

Ferulic acid (FA) is used in skin formulations for protection against the damaging actions of the reactive oxygen species (ROS) produced by UVA radiation. Possible underlying protective mechanisms are not fully elucidated. By considering the kinetics of proton-coupled electron transfer (PCET) and radical-radical coupling (RRC) mechanisms, it appears that direct scavenging could be operative, providing that a high local concentration of FA is present at the place of •OH generation. The resulting FA phenoxyl radical, after the scavenging of a second •OH and keto-enol tautomerization of the intermediate, produces 5-hydroxyferulic acid (5OHFA). Inhibition of the lipoxygenase (LOX) enzyme, one of the enzymes that catalyse free radical production, by FA and 5OHFA were analysed. Results of molecular docking calculations indicate favourable binding interactions of FA and 5OHFA with the LOX active site. The exergonicity of chelation reactions of the catalytic Fe2+ ion with FA and 5OHFA indicate the potency of these chelators to prevent the formation of •OH radicals via Fenton-like reactions. The inhibition of the prooxidant LOX enzyme could be more relevant mechanism of skin protection against UVA induced oxidative stress than iron chelation and assumed direct scavenging of ROS.

10.
Oxid Med Cell Longev ; 2021: 8849568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007407

RESUMO

Two newly synthesized 4-hydroxycoumarin bidentate ligands (L1 and L2) and their palladium(II) complexes (C1 and C2) were screened for their biological activities, in vitro and in vivo. Structures of new compounds were established based on elemental analysis, 1H NMR, 13C NMR, and IR spectroscopic techniques. The obtained compounds were tested for their antioxidative and cytotoxic activities and results pointed to selective antiradical activity of palladium(II) complexes towards •OH and -•OOH radicals and anti-ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical) activity comparable to that of ascorbate. Results indicated the effect of C1 and C2 on the enzymatic activity of the antioxidative defense system. In vitro cytotoxicity assay performed on different carcinoma cell lines (HCT166, A375, and MIA PaCa-2), and one healthy fibroblast cell line (MRC-5) showed a cytotoxic effect of both C1 and C2, expressed as a decrease in carcinoma cells' viability, mostly by induction of apoptosis. In vivo toxicity tests performed on zebrafish embryos indicated different effects of C1 and C2, ranging from adverse developmental effect to no toxicity, depending on tested concentration. According to docking studies, both complexes (C1 and C2) showed better inhibitory activity in comparison to other palladium(II) complexes.


Assuntos
4-Hidroxicumarinas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Paládio/metabolismo , Animais , Humanos , Peixe-Zebra
11.
Comput Biol Chem ; 84: 107170, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31810852

RESUMO

Octopamine is a neurotransmitter in invertebrates and a phenol analog of norepinephrine. The crystallographic and spectral (UV-visUV, and NMR) characteristics of octopamine were investigated experimentally and theoretically by applying appropriate level of theory, B3LYP-D3BJ/6-311++G(d,p), which reproduced well the experimental bond lengths and angles. The intramolecular interactions governing the stability of conformers were described by NBO and QTAIM analyses. The antiradical potencies of octopamine and norepinephrine towards DPPH and ABTS+ were examined with special emphasis on the preferred mechanism and effect of catechol moiety. Several techniques were used to distinguish Hydrogen Atom Transfer (HAT) and Proton Coupled Electron Transfer (PCET) mechanisms for reaction with DPPH. The calculated rate constants of the reactions with both radicals showed that Sequential Proton Loss Electron Transfer (SPLET) mechanism was dominant both thermodynamically and kinetically, with values of thermodynamic functions and rate constants clearly proving the importance of the second hydroxyl group in structure. The Molecular Docking and afterward Molecular Dynamics calculations of formed complexes between octopamine/norepinephrine with ß1- and ß2- adrenergic receptors examined in details the interactions that lead to the formation of stable complexes. The number of strong interactions of amino acids with norepinephrine was higher, but the absence of hydroxyl group in octopamine did not lead to a significant change in the type of interactions and stability. The formed complexes showed higher flexibility of amino acids, similar compactness of structure as proteins and increased interatomic distances of the backbone when compared to pure proteins.


Assuntos
Sequestradores de Radicais Livres/química , Neurotransmissores/química , Norepinefrina/química , Octopamina/química , Animais , Camelídeos Americanos , Sequestradores de Radicais Livres/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Octopamina/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Perus
12.
Phytochemistry ; 170: 112218, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31812108

RESUMO

The vast majority of previous studies dealing with antioxidant potency of (poly)phenols does not investigate the fate of phenoxyl radical obtained after single free radical scavenging. We investigated possible pathways of inactivation of ferulic acid phenoxyl radical (FAPR) using DFT method. Direct coupling with a set of 10 physiologically important free radicals, H-atom donation and dimerization were analysed by estimation of Gibbs free energy changes related to these processes. The former two processes are thermodynamically feasible to inactivate more dangerous free radicals such as hydroxyl, alkoxyl and carbon-centered radicals. Among dimerization reactions, the least energy demanding is formation of C-5-C-5 dimer of ferulic acid (FA), which has higher antiradical potency than FA itself. Obtained results reveal that FAPR, a priori considered as stable and unreactive, may contribute to the overall antioxidant activity of FA. This is a beneficial behavior, which makes FA a particularly valuable protector against oxidative stress. Hence, the contribution of phenoxyl radicals to the antioxidant activity of (poly)phenolic compounds should be taken into account, what has been scarcely considered until now.


Assuntos
Antioxidantes/farmacologia , Ácidos Cumáricos/farmacologia , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Antioxidantes/química , Ácidos Cumáricos/química , Teoria da Densidade Funcional , Radicais Livres/química , Radicais Livres/farmacologia , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Compostos Fitoquímicos/química
13.
Oxid Med Cell Longev ; 2019: 2069250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906500

RESUMO

The newly synthesized coumarin derivative with dopamine, 3-(1-((3,4-dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione, was completely structurally characterized by X-ray crystallography. It was shown that several types of hydrogen bonds are present, which additionally stabilize the structure. The compound was tested in vitro against different cell lines, healthy human keratinocyte HaCaT, cervical squamous cell carcinoma SiHa, breast carcinoma MCF7, and hepatocellular carcinoma HepG2. Compared to control, the new derivate showed a stronger effect on both healthy and carcinoma cell lines, with the most prominent effect on the breast carcinoma MCF7 cell line. The molecular docking study, obtained for ten different conformations of the new compound, showed its inhibitory nature against CDKS protein. Lower inhibition constant, relative to one of 4-OH-coumarine, proved stronger and more numerous interactions with CDKS protein. These interactions were carefully examined for both parent molecule and derivative and explained from a structural point of view.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cromanos/síntese química , Cromanos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Cromanos/química , Cristalografia por Raios X , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular
14.
Artigo em Inglês | MEDLINE | ID: mdl-29518681

RESUMO

Vanillylmandelic acid (VMA), an important metabolite of catecholamines that is routinely screened as tumor marker, was investigated by the various spectroscopic techniques (IR, Raman, UV-Vis, antioxidant decolorization assay and NMR). Structures optimized by the employment of five common functionals (M05-2X, M06-2X, B3LYP, CAM-B3LYP, B3LYP-D3) were compared with the crystallographic data. The M05-2X functional reproduced the most reliable experimental bond lengths and angles (correlation coefficient >0.999). The importance of intramolecular hydrogen bonds for structural stability was discussed and quantified by the NBO analysis. The most prominent bands in vibrational spectrum were analyzed and compared to the experimental data. The positions of the carbon and hydrogen atoms in NMR spectra were well reproduced. The differences in UV-Vis spectrum were investigated by adding the explicit solvent and by performing NBO and QTAIM analyses. The discrepancy in the two spectra of about 50nm could be explained by the solvent effect on carboxyl group. The most probable antioxidant activity mechanism was discussed for VMA and its carboxylate anion. The Molecular Docking study with the C - reactive protein additionally proved that variety of functional groups present in VMA and its anion allowed strong hydrogen and hydrophobic interactions.


Assuntos
Antioxidantes/farmacologia , Ácido Vanilmandélico/química , Ácido Vanilmandélico/farmacologia , Ânions , Antioxidantes/química , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , Solventes , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Análise Espectral Raman
15.
Food Chem ; 246: 481-489, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29291877

RESUMO

The role of antiradical moieties (catechol, guaiacyl and carboxyl group) and molecular conformation in antioxidative potency of dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) was investigated by density functional theory (DFT) method. The thermodynamic preference of different reaction paths of double (2H+/2e-) free radical scavenging mechanisms was estimated. Antiradical potency of DHCA and DHFA was compared with that exerted by their unsaturated analogs - caffeic acid (CA) and ferulic acid (FA). Cis/trans and anti-isomers of studied cinnamic acid derivatives may scavenge free radicals via double processes by involvement of catechol or guaiacyl moiety. Carboxyl group of syn-isomers may also participate in the inactivation of free radicals. Gibbs free energies of reactions with various free radicals indicate that syn-DHCA and syn-DHFA, colon catabolites that could be present in systemic circulation in low µM concentrations, have a potential to contribute to health benefits by direct free radical scavenging.


Assuntos
Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Catecóis/química , Sequestradores de Radicais Livres/química , Radicais Livres/química , Modelos Teóricos , Conformação Molecular , Relação Estrutura-Atividade , Termodinâmica
16.
Artigo em Inglês | MEDLINE | ID: mdl-29367024

RESUMO

The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins.


Assuntos
Cromanos/química , Cromanos/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Proteínas de Transporte/antagonistas & inibidores , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/antagonistas & inibidores , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Termodinâmica
17.
Food Chem ; 237: 390-398, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28764012

RESUMO

Although chlorogenic acid (5CQA) is an important ingredient of various foods and beverages, mechanisms of its antioxidative action have not been fully clarified. Besides electron spin resonance experiment, this study includes thermodynamic and mechanistic investigations of the hydrogen atom transfer (HAT), radical adduct formation (RAF), sequential proton loss electron transfer (SPLET), and single electron transfer - proton transfer (SET-PT) mechanisms of 5CQA in benzene, ethanol, and water solutions. The calculations were performed using the M06-2X/6-311++G(d,p) level of theory and CPCM solvation model. It was found that SET-PT is not a plausible antioxidative mechanism of 5CQA. RAF pathways are faster, but HAT yields thermodynamically more stable radical products, indicating that in acidic and neutral media 5CQA can take either HAT or RAF pathways. In basic environment (e.g. at physiological pH) SPLET is the likely antioxidative mechanism of 5CQA with extremely high rate.


Assuntos
Antioxidantes/química , Ácido Clorogênico/química , Oxirredução , Prótons , Termodinâmica
18.
Food Chem ; 218: 144-151, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27719890

RESUMO

Reaction energetics of the double (2H+/2e-), i.e., the first 1H+/1e- (catechol→ phenoxyl radical) and the second 1H+/1e- (phenoxyl radical→ quinone) free radical scavenging mechanisms of quercetin and its six colonic catecholic metabolites (caffeic acid, hydrocaffeic acid, homoprotocatechuic acid, protocatechuic acid, 4-methylcatechol, and catechol) were computationally studied using density functional theory, with the aim to estimate the antiradical potency of these molecules. We found that second hydrogen atom transfer (HAT) and second sequential proton loss electron transfer (SPLET) mechanisms are less energy demanding than the first ones indicating 2H+/2e- processes as inherent to catechol moiety. The Gibbs free energy change for reactions of inactivation of selected free radicals indicate that catecholic colonic metabolites constitute an efficient group of more potent scavengers than quercetin itself, able to deactivate various free radicals, under different biological conditions. They could be responsible for the health benefits associated with regular intake of flavonoid-rich diet.


Assuntos
Deutério/química , Sequestradores de Radicais Livres/metabolismo , Quercetina/metabolismo , Termodinâmica , Transporte de Elétrons/fisiologia , Sequestradores de Radicais Livres/química , Radicais Livres/química , Radicais Livres/metabolismo , Hidrogênio/química , Oxirredução , Prótons , Quercetina/química
19.
Food Chem ; 218: 440-446, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27719933

RESUMO

Naturally occurring flavonoids, delphinidin, pelargonidin and malvin, were investigated experimentally and theoretically for their ability to scavenge hydroxyl and nitric oxide radicals. Electron spin resonance (ESR) spectroscopy was used to determine antiradical activity of the selected compounds and M05-2X/6-311+G(d,p) level of theory for the calculation of reaction enthalpies related to three possible mechanisms of free radical scavenging activity, namely HAT, SET-PT and SPLET. The results obtained show that the molecules investigated reacted with hydroxyl radical via both HAT and SPLET in the solvents investigated. These results point to HAT as implausible for the reaction with nitric oxide radical in all the solvents investigated. SET-PT also proved to be thermodynamically unfavourable for all three molecules in the solvents considered.


Assuntos
Antocianinas/farmacologia , Sequestradores de Radicais Livres/farmacologia , Glucosídeos/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Radical Hidroxila/metabolismo , Óxido Nítrico/metabolismo , Termodinâmica
20.
Nat Prod Res ; 31(10): 1177-1180, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27539815

RESUMO

Anti-biofilm activity of three anthocyanidins (pelargonidin, cyanidin and delphinidin) was evaluated for the first time at in vitro conditions. All the compounds reduced the formation of Pseudomonas aeruginosa PAO1 biofilm at low sub-MIC (0.125 MIC) with delphinidin (c 56.25 µg/mL) being the most active (43%). In comparison, ampicillin (c 93.75 µg/mL) and streptomycin (c 21.25 µg/mL) (used as positive controls) were considerably less effective at the same sub-MIC (8 and 12%, respectively). Furthermore, at 0.5 MIC (c 225 µg/mL) this anthocyanidin molecule partly reduced the bacterial protrusions. However, no any of the aforementioned compounds inhibited the production of pyocyanin by the bacterial strain P. aeruginosa PAO1. Taken all together, the delphinidin scaffold could be taken into consideration for the design of the novel and more effective anti-biofilm agents inspired by the anthocyanidins.


Assuntos
Antocianinas/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Piocianina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...